As anyone who has sat through a business meeting knows, the office of today includes graphics as well as text. In 1970, Shoup, who is now chairman of Aurora Systems Inc., started working at PARC on new ways to create and manipulate images digitally in the office of the future. His research started the field of television graphics and won Emmy awards for both him and Xerox.
“It quickly became clear that if we wanted to do a raster scan system, we ought to do it compatible with television standards so that we could easily obtain monitors and cameras and videotape recorders,” Shoup recalled. In early 1972 he built some simple hardware to generate antialiased lines, and by early 1973 the system, called Superpaint, was completed.
It was the first complete paint system with an 8-bit frame buffer anywhere, recalled Alvy Ray Smith, who worked with Superpaint at PARC and is soon to be vice president and chief technical officer of Pixar Inc., San Rafael, Calif.; it was also the first system to use several graphics aids: color lookup tables for simple animation, a digitizing tablet for input, a palette for mixing colors directly on the screen. The system also had a real-time video scanner so images of real objects could be digitized and then manipulated.
“The very first thing I did on the system was some antialiased lines and circles,” Shoup said, “because I’d written a paper on that subject and hadn’t finished the examples. But when I submitted the paper and had it accepted, the machine that was going to be used to do the examples wasn’t built yet.”
By mid-1974, Superpaint had been augmented by additional software that allowed it to perform all kinds of tricks, and Smith, who had just completed doctoral work in a branch of mathematics known as cellular automata theory, was hired to help put the machine through its paces. He used Superpaint to make a videotape called “Vidbits” that was later shown at the Museum of Modern Art in New York City. Six months later his initial contract with PARC expired and was not renewed. While disappointed, Smith was not surprised, as he had found that not everyone there shared his enthusiasm for painting with a computer.
“The color graphics lab was a long narrow room with seven doors into it,” he recalled. “You had to go through it to get to a lot of other places. Most people, when they walked through, would look at the screen and stop-even the most trite stuff had never been seen before. Cycling color maps had never been seen before. But there were some people who would go through and wouldn’t stop. I couldn’t figure out how people could walk through that room and never stop and look.”
A reason aside from others’ indifference to video graphics may have contributed to Smith’s departure. One of the first times Superpaint was seen by a wide audience was in a public television show, “Supervisions,” produced by station KCET in Los Angeles. “It was just used a couple of times for little color cycling effects,” Shoup recalled. But Xerox was not amused by the unauthorized use of the system in a program.
“Bob Taylor sat with Alvy [Smith] one entire afternoon while Alvy pushed the erase button on the videotape recorder, eliminating the Xerox logo from every copy of that tape,” Shoup continued. (This was one of the tapes viewed by the committee that awarded Xerox its Emmy.)
It was the first system to use...color lookup tables for simple animation, a digitizing tablet for input, [and] a palette for mixing colors directly on the screen.
Shoup stayed at PARC, supported by Kay’s research group, while Smith moved on, armed with a National Education Association grant to do computer art. He found support for his work at the New York Institute of Technology, where he helped develop Paint, which became the basis of Ampex Video Art (AVA), and N.Y. Tech’s Images, two graphics systems still in use today.
While Shoup was alone in pursuing Superpaint at PARC, Smith wasn’t the only Superpaint addict wandering the country in search of a frame buffer. David Miller, now known as David Em, and David Difrancesco were the first artists to paint with pixels. When Em lost access to Superpaint, he set out on a year-long quest for a frame buffer that finally brought him to the Jet Propulsion Laboratory in Pasadena, Calif.
Finally, in 1979, Shoup left PARC to start his own company to manufacture and market a paint system, the Aurora 100. He ac knowledges that he made no technological leaps in designing the Aurora, which is simply a commercialized second-generation version of his first-generation system at PARC.
“The machine we’re building at Aurora for our next generation is directly related to things we were thinking about seven or eight years ago at PARC,” Shoup said.
The Aurora 100 is now used by corporations to develop in house training films and presentation graphics. Today, tens of thousands of artists are painting with pixels. The 1985 Siggraph art show in San Francisco alone received 4000 entries.
Reference: https://ift.tt/Y6OstDm
No comments:
Post a Comment