Tuesday, November 5, 2024

U.S. Chip Revival Plan Chooses Sites




Last week the organization tasked with running the the biggest chunk of U.S. CHIPS Act’s US $13 billion R&D program made some significant strides: The National Semiconductor Technology Center (NSTC) released a strategic plan and selected the sites of two of three planned facilities and released a new strategic plan. The locations of the two sites—a “design and collaboration” center in Sunnyvale, Calif., and a lab devoted to advancing the leading edge of chipmaking, in Albany, N.Y.—build on an existing ecosystem at each location, experts say. The location of the third planned center—a chip prototyping and packaging site that could be especially critical for speeding semiconductor startups—is still a matter of speculation.

“The NSTC represents a once-in-a-generation opportunity for the U.S. to accelerate the pace of innovation in semiconductor technology,” Deirdre Hanford, CEO of Natcast, the nonprofit that runs the NSTC centers, said in a statement. According to the strategic plan, which covers 2025 to 2027, the NSTC is meant to accomplish three goals: extend U.S. technology leadership, reduce the time and cost to prototype, and build and sustain a semiconductor workforce development ecosystem. The three centers are meant to do a mix of all three.

New York gets extreme ultraviolet lithography

NSTC plans to direct $825 million into the Albany project. The site will be dedicated to extreme ultraviolet lithography, a technology that’s essential to making the most advanced logic chips. The Albany Nanotech Complex, which has already seen more than $25 billion in investments from the state and industry partners over two decades, will form the heart of the future NSTC center. It already has an EUV lithography machine on site and has begun an expansion to install a next-generation version, called high-NA EUV, which promises to produce even finer chip features. Working with a tool recently installed in Europe, IBM, a long-time tenant of the Albany research facility, reported record yields of copper interconnects built every 21 nanometers, a pitch several nanometers tighter than possible with ordinary EUV.

“It’s fulfilling to see that this ecosystem can be taken to the national and global level through CHIPS Act funding,” said Mukesh Khare, general manager of IBM’s semiconductors division, speaking from the future site of the NSTC EUV center. “It’s the right time, and we have all the ingredients.”

While only a few companies are capable of manufacturing cutting edge logic using EUV, the impact of the NSTC center will be much broader, Khare argues. It will extend down as far as early-stage startups with ideas or materials for improving the chipmaking process “An EUV R&D center doesn’t mean just one machine,” says Khare. “It needs so many machines around it… It’s a very large ecosystem.”

Silicon Valley lands the design center

The design center is tasked with conducting advanced research in chip design, electronic design automation (EDA), chip and system architectures, and hardware security. It will also host the NSTC’s design enablement gateway—a program that provides NSTC members with a secure, cloud-based access to design tools, reference processes and designs, and shared data sets, with the goal of reducing the time and cost of design. Additionally, it will house workforce development, member convening, and administration functions.

Situating the design center in Silicon Valley, with its concentration of research universities, venture capital, and workforce, seems like the obvious choice to many experts. “I can’t think of a better place,” says Patrick Soheili, co-founder of interconnect technology startup Eliyan, which is based in Santa Clara, Calif.

Abhijeet Chakraborty, vice president of engineering in the technology and product group at Silicon Valley-based Synopsys, a leading maker of EDA software, sees Silicon Valley’s expansive tech ecosystem as one of its main advantages in landing the NSTC’s design center. The region concentrates companies and researchers involved in the whole spectrum of the industry from semiconductor process technology to cloud software.

Access to such a broad range of industries is increasingly important for chip design startups, he says. “To design a chip or component these days you need to go from concept to design to validation in an environment that takes care of the entire stack,” he says. It’s prohibitively expensive for a startup to do that alone, so one of Chakraborty’s hopes for the design center is that it will help startups access the design kits and other data needed to operate in this new environment.

Packaging and prototyping still to come

A third promised center for prototyping and packaging is still to come. “The big question is where does the packaging and prototyping go?” says Mark Granahan, cofounder and CEO of Pennsylvania-based power semiconductor startup Ideal Semiconductor. “To me that’s a great opportunity.” He points out that because there is so little packaging technology infrastructure in the United States, any ambitious state or region should have a shot at hosting such a center. One of the original intentions of the act, after all, was to expand the number of regions of the country that are involved in the semiconductor industry.

But that hasn’t stopped some already tech-heavy regions from wanting it. “Oregon offers the strongest ecosystem for such a facility,” a spokesperson for Intel, whose technology development is done there. “The state is uniquely positioned to contribute to the success of the NSTC and help drive technological advancements in the U.S. semiconductor industry.”

As NSTC makes progress, Granahan’s concern is that bureaucracy will expand with it and slow efforts to boost the U.S. chip industry. Already the layers of control are multiplying. The Chips Office at the National Institute of Standards and Technology executes the Act. The NSTC is administered by the nonprofit Natcast, which directs the EUV center, which is in a facility run by another nonprofit, NY CREATES. “We want these things to be agile and make local decisions.”

Reference: https://ift.tt/XI7pOjn

Monday, November 4, 2024

New Zemeckis film used AI to de-age Tom Hanks and Robin Wright


On Friday, TriStar Pictures released Here, a $50 million Robert Zemeckis-directed film that used real time generative AI face transformation techniques to portray actors Tom Hanks and Robin Wright across a 60-year span, marking one of Hollywood's first full-length features built around AI-powered visual effects.

The film adapts a 2014 graphic novel set primarily in a New Jersey living room across multiple time periods. Rather than cast different actors for various ages, the production used AI to modify Hanks' and Wright's appearances throughout.

The de-aging technology comes from Metaphysic, a visual effects company that creates real time face swapping and aging effects. During filming, the crew watched two monitors simultaneously: one showing the actors' actual appearances and another displaying them at whatever age the scene required.

Read full article

Comments

Reference : https://ift.tt/gJ3lVRM

Nvidia ousts Intel from Dow Jones Index after 25-year run


On Friday, S&P Dow Jones Indices announced that AI chipmaker Nvidia will replace Intel in the Dow Jones Industrial Average, marking a seismic shift in the semiconductor industry and ending Intel's 25-year run on the prestigious stock market index. The change takes effect on November 8.

"The index changes were initiated to ensure a more representative exposure to the semiconductors industry," wrote S&P in a press release.

Intel's stock has dropped 54 percent this year, making it the worst performer on the Dow, and the company now holds a market value of under $100 billion for the first time in three decades, Reuters reported. Analysts expect Intel to post its first annual net loss since 1986.

Read full article

Comments

Reference : https://ift.tt/lQ6k3ud

Boston Dynamics' Latest Vids Show Atlas Going Hands On




Boston Dynamics are the masters of dropping amazing robot videos with no warning, and last week, we got a surprise look at the new electric Atlas going “hands on” with a practical factory task.

This video is notable because it’s the first real look we’ve had at the new Atlas doing something useful—or doing anything at all, really, as the introductory video from back in April (the first time we saw the robot) was less than a minute long. And the amount of progress that Boston Dynamics has made is immediately obvious, with the video showing a blend of autonomous perception, full body motion, and manipulation in a practical task.

We sent over some quick questions as soon as we saw the video, and we’ve got some extra detail from Scott Kuindersma, senior director of Robotics Research at Boston Dynamics.


If you haven’t seen this video yet, what kind of robotics person are you, and also here you go:

Atlas is autonomously moving engine covers between supplier containers and a mobile sequencing dolly. The robot receives as input a list of bin locations to move parts between.

Atlas uses a machine learning (ML) vision model to detect and localize the environment fixtures and individual bins [0:36]. The robot uses a specialized grasping policy and continuously estimates the state of manipulated objects to achieve the task.

There are no prescribed or teleoperated movements; all motions are generated autonomously online. The robot is able to detect and react to changes in the environment (e.g., moving fixtures) and action failures (e.g., failure to insert the cover, tripping, environment collisions [1:24]) using a combination of vision, force, and proprioceptive sensors.

Eagle-eyed viewers will have noticed that this task is very similar to what we saw hydraulic Atlas (Atlas classic?) working on just before it retired. We probably don’t need to read too much into the differences between how each robot performs that task, but it’s an interesting comparison to make.

For more details, here’s our Q&A with Kuindersma:

How many takes did this take?

Kuindersma: We ran this sequence a couple times that day, but typically we’re always filming as we continue developing and testing Atlas. Today we’re able to run that engine cover demo with high reliability, and we’re working to expand the scope and duration of tasks like these.

Is this a task that humans currently do?

Kuindersma: Yes.

What kind of world knowledge does Atlas have while doing this task?

Kuindersma: The robot has access to a CAD model of the engine cover that is used for object pose prediction from RGB images. Fixtures are represented more abstractly using a learned keypoint prediction model. The robot builds a map of the workcell at startup which is updated on the fly when changes are detected (e.g., moving fixture).

Does Atlas’ torso have a front or back in a meaningful way when it comes to how it operates?

Kuindersma: Its head/torso/pelvis/legs do have “forward” and “backward” directions, but the robot is able to rotate all of these relative to one another. The robot always knows which way is which, but sometimes the humans watching lose track.

Are the head and torso capable of unlimited rotation?

Kuindersma: Yes, many of Atlas’ joints are continuous.

How long did it take you folks to get used to the way Atlas moves?

Kuindersma: Atlas’ motions still surprise and delight the team.

OSHA recommends against squatting because it can lead to workplace injuries. How does Atlas feel about that?

Kuindersma: As might be evident by some of Atlas’ other motions, the kinds of behaviors that might be injurious for humans might be perfectly fine for robots.

Can you describe exactly what process Atlas goes through at 1:22?

Kuindersma: The engine cover gets caught on the fabric bins and triggers a learned failure detector on the robot. Right now this transitions into a general-purpose recovery controller, which results in a somewhat jarring motion (we will improve this). After recovery, the robot retries the insertion using visual feedback to estimate the state of both the part and fixture.

Were there other costume options you considered before going with the hot dog?

Kuindersma: Yes, but marketing wants to save them for next year.

How many important sensors does the hot dog costume occlude?

Kuindersma: None. The robot is using cameras in the head, proprioceptive sensors, IMU, and force sensors in the wrists and feet. We did have to cut the costume at the top so the head could still spin around.

Why are pickles always causing problems?

Kuindersma: Because pickles are pesky, polarizing pests.

Reference: https://ift.tt/rxN3hnJ

Perplexity will show live US election results despite AI accuracy warnings


On Friday, Perplexity launched an election information hub that relies on data from The Associated Press and Democracy Works to provide live updates and information about the 2024 US general election, which takes place on Tuesday, November 5.

"Starting Tuesday, we'll be offering live updates on elections using data from The Associated Press so you can stay informed on presidential, senate, and house races at both a state and national level," Perplexity wrote in a blog post. The site will pull data from special data sources (called APIs) hosted by the two organizations.

As of Monday, Perplexity's hub currently provides interactive information on voting requirements, poll times, and summaries about ballot measures, candidates, policy positions, and endorsements. Users can ask questions about the information similar to using a chatbot like ChatGPT.

Read full article

Comments

Reference : https://ift.tt/ARgwISn

Katherine Bennell-Pegg: Australia’s First Astronaut Makes History




This is a sponsored article brought to you by BESydney.

In July 2024, Sydney woman Katherine Bennell-Pegg made history as the first astronaut to graduate under the Australian flag and the first female astronaut in Australia. Her journey, marked by determination and discipline, showcases Australia’s growing prominence in space exploration and research.

From her academic achievements at the University of Sydney (USYD) to her rigorous training at the European Space Agency (ESA), Bennell-Pegg’s success has paved a path forward for aspiring space and aerospace professionals in Australia and globally.

A journey to the stars begins in Sydney

Katherine Bennell-Pegg was born in Sydney, New South Wales, and grew up in the Northern Beaches area. Her fascination with space began at an early age.

“I always dreamed of being an astronaut,” Bennell-Pegg shared in her “Insights from an Australian Astronaut” Space Forum Speech in July 2024. “When I was young, it was for the adventure, but after more than a decade working in space, it’s now because I know the role it plays in tackling real-world problems and developing new knowledge that can benefit our society, environment and science.”

Sydney: A Hub for Space Innovation


Sydney, the vibrant heart of the state of New South Wales (NSW), stands at the forefront of aerospace innovation in Australia. With its world-class research facilities, leading academic institutions and strategic geographic positioning, Sydney is not only Australia’s gateway to the Indo-Pacific but also a burgeoning hub for international aerospace endeavours.

NSW is home to more than 40 per cent of Australia’s aerospace industry. Substantial investments from both the state and federal governments support this concentration of capabilities, underpinning Sydney’s role as a leader in aerospace. From advanced manufacturing and cybersecurity to quantum technologies and space exploration, this progressive city is truly thriving.

Sydney’s appeal as a desirable location for hosting aerospace conferences and business events is bolstered by its comprehensive infrastructure, vibrant startup community and strategic position as a transport hub.

Sydney’s track record of successfully hosting events highlights the city’s ability to organise impactful international gatherings, including:

  • Australian Space Summit
  • New Horizons Summit
  • CubeSatPlus2024 - NEW SPACE: Unbounded Skies

Sydney will also host the 76th International Astronautical Congress from 29 September to 3 October 2025 and the 34th Congress of the International Council for the Aeronautical Sciences (ICAS) to be held 13 to 17 September 2026. Both will take place at ICC Sydney, further solidifying Sydney’s status as a central hub for aerospace events.

Would you like to know more about Sydney’s credentials in Aerospace? Download our Aerospace eBook or visit besydney.com.au

Sydney proved to be the ideal location for Bennell-Pegg’s journey to begin. She studied at the University of Sydney, where she earned a Bachelor of Engineering (Honors) in Aeronautical Engineering (Space) and a Bachelor of Science (Advanced) in Physics.

Sydney’s universities are at the forefront of aerospace education and research. Institutions such as the University of Sydney (USYD), the University of New South Wales (UNSW Sydney) and the University of Technology Sydney (UTS) attract students from around the world. UNSW Sydney, with its School of Aerospace, Mechanical, and Mechatronic Engineering, is renowned for its innovative research in space technology and satellite systems, while UTS provides cutting-edge programs in aerospace engineering and physics, emphasizing practical applications and industry partnerships. USYD excels in aeronautical engineering and space science, supported by advanced facilities and strong ties to major aerospace organisations. Together, these universities offer comprehensive programs that integrate theoretical knowledge with hands-on experience, preparing students for dynamic careers in the rapidly evolving aerospace and space sectors.

Having excelled in her studies at USYD, Bennell-Pegg was awarded the Charles Kuller Graduation Prize for her top-placed undergraduate thesis. Subsequently, her quest for knowledge took her to Europe, where she earned two Master of Science degrees: one in Astronautics and Space Engineering from Cranfield University and another in Space Technology from Luleå University of Technology.

Reflecting on her educational path, Bennell-Pegg stated, “With the encouragement of my parents, I researched what it would take to become an astronaut and worked hard at school, participating in everything from aerobatic flying lessons to amateur astronomy.”

Inside the rigorous training regimen of an astronaut

Bennell-Pegg’s professional career began with roles at Airbus UK, where she contributed to numerous space missions and concept studies, such as Martian in-situ resource utilisation and space debris removal. Her expertise led her to the Australian Space Agency, where she became the Director of Space Technology.

In 2021, Bennell-Pegg was invited by the European Space Agency (ESA) to undertake Basic Astronaut Training at the European Astronaut Centre in Germany. When the ESA application opened in 2021, it was the first opening in 15 years. Bennell-Pegg jumped at the opportunity to apply alongside over 22,000 others from 22 countries. She endured six knock-out rounds, including medical, psychometrics, psychology and technical tests and made it to the group of 25 who passed.

This historic invitation marked the first time an international astronaut candidate was offered training by the ESA.

“The training was demanding, but it was also an incredible opportunity to learn from some of the best minds in the field and to be part of a team that is pushing the boundaries of human exploration.”—Katherine Bennell-Pegg

Bennell-Pegg’s training regimen was intense, encompassing physical conditioning, complex simulations, and theoretical classes designed to prepare candidates for long-duration missions to the International Space Station (ISS) and beyond. This included:

  • Studies in biology, astronomy, earth sciences, meteorology, materials, medical and fluids, both in theory and in labs.
  • Radiation research – an area of expertise for Australia. This will increase as humans travel back to the Moon.
  • Medical operations: Astronauts need to be able to perform medical procedures on themselves and others.
  • Training for expeditions: This included honing team dynamics through behavioral training, ocean and winter survival training, rescue and firefighting.

Sharing her thoughts on this transformative experience, Bennell-Pegg said, “The training was demanding, but it was also an incredible opportunity to learn from some of the best minds in the field and to be part of a team that is pushing the boundaries of human exploration.”

In April 2024, Bennell-Pegg completed her training, graduating with her ESA classmates from “The Hoppers” group. Upon graduation, she became fully qualified for assignments on long-duration missions to the ISS, making her the first Australian female astronaut and the first person to train as an astronaut under the Australian flag.

“I want to use this experience to open doors for Australian scientists and engineers to utilize space for their discoveries,” Bennell-Pegg said. “I hope to inspire the pursuit of STEM careers and show all Australians that they too can reach for the stars.”

Elevating Australia’s role in space exploration

Katherine Bennell-Pegg’s achievements represent a significant milestone. Her journey from the University of Sydney to the rigorous training programs at the European Astronaut Centre showcases the potential of Australian talent in the global space community.

“Being the first astronaut trained under the Australian flag is an incredible honor,” Bennell-Pegg said. “I’m grateful for the support that has fueled me through intense training and opened doors for more Australians in space exploration. Whether I fly or not, there is much to accomplish here on Earth. I’m excited to leverage this experience to inspire future generations in STEM and elevate Australia’s presence in the global space community. Becoming an astronaut is just the beginning.”

Bennell-Pegg’s dream to become an Australian astronaut is more than just a personal triumph; it is a win for anyone who aspires to a career in space or aerospace. Sydney, with its world-class educational institutions, advanced manufacturing facilities scheduled for the Western Sydney Aerotropolis and expanding opportunities in aerospace and defence, is an ideal starting point for anyone looking to make their mark in these sectors.

Would you like to know more about Sydney’s credentials in Aerospace? Download our Aerospace eBook or visit besydney.com.au

Reference: https://ift.tt/8Y1K0d2

Sunday, November 3, 2024

Touchscreens Are Out, and Tactile Controls Are Back




Tactile controls are back in vogue. Apple added two new buttons to the iPhone 16, home appliances like stoves and washing machines are returning to knobs, and several car manufacturers are reintroducing buttons and dials to dashboards and steering wheels.

With this “re-buttonization,” as The Wall Street Journal describes it, demand for Rachel Plotnick’s expertise has grown. Plotnick, an associate professor of Cinema and Media Studies at Indiana University in Bloomington, is the leading expert on buttons and how people interact with them. She studies the relationship between technology and society with a focus on everyday or overlooked technologies, and wrote the 2018 book Power Button: A History of Pleasure, Panic, and the Politics of Pushing. Now, companies are reaching out to her to help improve their tactile controls.

You wrote a book a few years ago about the history of buttons. What inspired that book?

Rachel Plotnick: Around 2009, I noticed there was a lot of discourse in the news about the death of the button. This was a couple years after the first iPhone had come out, and a lot of people were saying that, as touchscreens were becoming more popular, eventually we weren’t going to have any more physical buttons to push. This started to happen across a range of devices like the Microsoft Kinect, and after films like Minority Report had come out in the early 2000s, everyone thought we were moving to this kind of gesture or speech interface. I was fascinated by this idea that an entire interface could die, and that led me down this big wormhole, to try to understand how we came to be a society that pushed buttons everywhere we went.

Portrait of Rachel Plotnick smiling outdoors. Rachel Plotnick studies the ways we use everyday technologies and how they shape our relationships with each other and the world.Rachel Plotnick

The more that I looked around, the more that I saw not only were we pressing digital buttons on social media and to order things from Amazon, but also to start our coffee makers and go up and down in elevators and operate our televisions. The pervasiveness of the button as a technology pitted against this idea of buttons disappearing seemed like such an interesting dichotomy to me. And so I wanted to understand an origin story, if I could come up with it, of where buttons came from.

What did you find in your research?

Plotnick: One of the biggest observations I made was that a lot of fears and fantasies around pushing buttons were the same 100 years ago as they are today. I expected to see this society that wildly transformed and used buttons in such a different way, but I saw these persistent anxieties over time about control and who gets to push the button, and also these pleasures around button pushing that we can use for advertising and to make technology simpler. That pendulum swing between fantasy and fear, pleasure and panic, and how those themes persisted over more than a century was what really interested me. I liked seeing the connections between the past and the present.

[Back to top]

We’ve experienced the rise of touchscreens, but now we might be seeing another shift—a renaissance in buttons and physical controls. What’s prompting the trend?

Plotnick: There was this kind of touchscreen mania, where all of a sudden everything became a touchscreen. Your car was a touchscreen, your refrigerator was a touchscreen. Over time, people became somewhat fatigued with that. That’s not to say touchscreens aren’t a really useful interface, I think they are. But on the other hand, people seem to have a hunger for physical buttons, both because you don’t always have to look at them—you can feel your way around for them when you don’t want to directly pay attention to them—but also because they offer a greater range of tactility and feedback.

If you look at gamers playing video games, they want to push a lot of buttons on those controls. And if you look at DJs and digital musicians, they have endless amounts of buttons and joysticks and dials to make music. There seems to be this kind of richness of the tactile experience that’s afforded by pushing buttons. They’re not perfect for every situation, but I think increasingly, we’re realizing the merit that the interface offers.

What else is motivating the re-buttoning of consumer devices?

Plotnick: Maybe screen fatigue. We spend all our days and nights on these devices, scrolling or constantly flipping through pages and videos, and there’s something tiring about that. The button may be a way to almost de-technologize our everyday existence, to a certain extent. That’s not to say buttons don’t work with screens very nicely—they’re often partners. But in a way, it’s taking away the priority of vision as a sense, and recognizing that a screen isn’t always the best way to interact with something.

When I’m driving, it’s actually unsafe for my car to be operated in that way. It’s hard to generalize and say, buttons are always easy and good, and touchscreens are difficult and bad, or vice versa. Buttons tend to offer you a really limited range of possibilities in terms of what you can do. Maybe that simplicity of limiting our field of choices offers more safety in certain situations.

It also seems like there’s an accessibility issue when prioritizing vision in device interfaces, right?

Plotnick: The blind community had to fight for years to make touchscreens more accessible. It’s always been funny to me that we call them touchscreens. We think about them as a touch modality, but a touchscreen prioritizes the visual. Over the last few years, we’re seeing Alexa and Siri and a lot of these other voice activated systems that are making things a little bit more auditory as a way to deal with that. But the touch screen is oriented around visuality.

It sounds like, in general, having multiple interface options is the best way to move forward—not that touchscreens are going to become completely passé, just like the button never actually died.

Plotnick: I think that’s accurate. We see paradigm shifts over time with technologies, but for the most part, we often recycle old ideas. It’s striking that if we look at the 1800s, people were sending messages via telegraph about what the future would look like if we all had this dashboard of buttons at our command where we could communicate with anyone and shop for anything. And that’s essentially what our smartphones became. We still have this dashboard menu approach. I think it means carefully considering what the right interface is for each situation.

[Back to top]

Several companies have reached out to you to learn from your expertise. What do they want to know?

Plotnick: I think there is a hunger out there from companies designing buttons or consumer technologies to try to understand the history of how we used to do things, how we might bring that to bear on the present, and what the future looks like with these interfaces. I’ve had a number of interesting discussions with companies, including one that manufactures push button interfaces. I had a conversation with them about medical devices like CT machines and X-ray machines, trying to imagine the easiest way to push a button in that situation, to save people time and improve the patient encounter.

I’ve also talked to people about what will make someone use a defibrillator or not. Even though it’s really simple to go up to these automatic machines, if you see someone going into cardiac arrest in a mall or out on the street, a lot of people are terrified to actually push the button that would get this machine started. We had a really fascinating discussion about why someone wouldn’t push a button, and what would it take to get them to feel okay about doing that.

In all of these cases, these are design questions, but they’re also social and cultural questions. I like the idea that people who are in the humanities studying these things from a long term perspective can also speak to engineers trying to build these devices.

So these companies also want to know about the history of buttons?

Plotnick: I’ve had some fascinating conversations around history. We all want to learn what mistakes not to make and what worked well in the past. There’s often this narrative of progress, that things are only getting better with technology over time. But if we look at these lessons, I think we can see that sometimes things were simpler or better in a past moment, and sometimes they were harder. Often with new technologies, we think we’re completely reinventing the wheel. But maybe these concepts existed a long time ago, and we haven’t paid attention to that. There’s a lot to be learned from the past.

[Back to top]

Reference: https://ift.tt/Xl7VQhw

Friday, November 1, 2024

Thousands of hacked TP-Link routers used in years-long account takeover attacks


Hackers working on behalf of the Chinese government are using a botnet of thousands of routers, cameras, and other Internet-connected devices to perform highly evasive password spray attacks against users of Microsoft’s Azure cloud service, the company warned Thursday.

The malicious network, made up almost entirely of TP-Link routers, was first documented in October 2023 by a researcher who named it Botnet-7777. The geographically dispersed collection of more than 16,000 compromised devices at its peak got its name because it exposes its malicious malware on port 7777.

Account compromise at scale

In July and again in August of this year, security researchers from Serbia and Team Cymru reported the botnet was still operational. All three reports said that Botnet-7777 was being used to skillfully perform password spraying, a form of attack that sends large numbers of login attempts from many different IP addresses. Because each individual device limits the login attempts, the carefully coordinated account-takeover campaign is hard to detect by the targeted service.

Read full article

Comments

Reference : https://ift.tt/HvBYRp0

Video Friday: Trick or Treat, Atlas




Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

Humanoids 2024: 22–24 November 2024, NANCY, FRANCE

Enjoy today’s videos!

We’re hoping to get more on this from Boston Dynamics, but if you haven’t seen it yet, here’s electric Atlas doing something productive (and autonomous!).

And why not do it in a hot dog costume for Halloween, too?

[ Boston Dynamics ]

Ooh, this is exciting! Aldebaran is getting ready to release a seventh generation of NAO!

[ Aldebaran ]

Okay I found this actually somewhat scary, but Happy Halloween from ANYbotics!

[ ANYbotics ]

Happy Halloween from the Clearpath!

[ Clearpath Robotics Inc. ]

Another genuinely freaky Happy Halloween, from Boston Dynamics!

[ Boston Dynamics ]

This “urban opera” by Compagnie La Machine took place last weekend in Toulouse, featuring some truly enormous fantastical robots.

[ Compagnie La Machine ]

Thanks, Thomas!

Impressive dismount from Deep Robotics’ DR01.

[ Deep Robotics ]

Cobot juggling from Daniel Simu.

[ Daniel Simu ]

Adaptive-morphology multirotors exhibit superior versatility and task-specific performance compared to traditional multirotors owing to their functional morphological adaptability. However, a notable challenge lies in the contrasting requirements of locking each morphology for flight controllability and efficiency while permitting low-energy reconfiguration. A novel design approach is proposed for reconfigurable multirotors utilizing soft multistable composite laminate airframes.

[ Environmental Robotics Lab paper ]

This is a pitching demonstration of new Torobo. New Torobo is lighter than the older version, enabling faster motion such as throwing a ball. The new model will be available in Japan in March 2025 and overseas from October 2025 onward.

[ Tokyo Robotics ]

I’m not sure what makes this “the world’s best robotic hand for manipulation research,” but it seems solid enough.

[ Robot Era ]

And now, picking a micro cat.

[ RoCogMan Lab ]

When Arvato’s Louisville, Ky. staff wanted a robotics system that could unload freight with greater speed and safety, Boston Dynamics’ Stretch robot stood out. Stretch is a first of its kind mobile robot designed specifically to unload boxes from trailers and shipping containers, freeing up employees to focus on more meaningful tasks in the warehouse. Arvato acquired its first Stretch system this year and the robot’s impact was immediate.

[ Boston Dynamics ]

NASA’s Perseverance Mars rover used its Mastcam-Z camera to capture the silhouette of Phobos, one of the two Martian moons, as it passed in front of the Sun on Sept. 30, 2024, the 1,285th Martian day, or sol, of the mission.

[ NASA ]

Students from Howard University, Moorehouse College, and Berea College joined University of Michigan robotics students in online Robotics 102 courses for the fall ‘23 and winter ‘24 semesters. The class is part of the distributed teaching collaborative, a co-teaching initiative started in 2020 aimed at providing cutting edge robotics courses for students who would normally not have access to at their current university.

[ University of Michigan Robotics ]

Discover the groundbreaking projects and cutting-edge technology at the Robotics and Automation Summer School (RASS) hosted by Los Alamos National Laboratory. In this exclusive behind-the-scenes video, students from top universities work on advanced robotics in disciplines such as AI, automation, machine learning, and autonomous systems.

[ Los Alamos National Laboratory ]

This week’s Carnegie Mellon University Robotics Institute Seminar is from Princeton University’s Anirudha Majumdar, on “Robots That Know When They Don’t Know.”

Foundation models from machine learning have enabled rapid advances in perception, planning, and natural language understanding for robots. However, current systems lack any rigorous assurances when required to generalize to novel scenarios. For example, perception systems can fail to identify or localize unfamiliar objects, and large language model (LLM)-based planners can hallucinate outputs that lead to unsafe outcomes when executed by robots. How can we rigorously quantify the uncertainty of machine learning components such that robots know when they don’t know and can act accordingly?

[ Carnegie Mellon University Robotics Institute ]

Reference: https://ift.tt/w5GBjCP

Why the Art of Invention Is Always Being Reinvented




Every invention begins with a problem—and the creative act of seeing a problem where others might just see unchangeable reality. For one 5-year-old, the problem was simple: She liked to have her tummy rubbed as she fell asleep. But her mom, exhausted from working two jobs, often fell asleep herself while putting her daughter to bed. “So [the girl] invented a teddy bear that would rub her belly for her,” explains Stephanie Couch, executive director of the Lemelson MIT Program. Its mission is to nurture the next generation of inventors and entrepreneurs.

Anyone can learn to be an inventor, Couch says, given the right resources and encouragement. “Invention doesn’t come from some innate genius, it’s not something that only really special people get to do,” she says. Her program creates invention-themed curricula for U.S. classrooms, ranging from kindergarten to community college.

We’re biased, but we hope that little girl grows up to be an engineer. By the time she comes of age, the act of invention may be something entirely new—reflecting the adoption of novel tools and the guiding forces of new social structures. Engineers, with their restless curiosity and determination to optimize the world around them, are continuously in the process of reinventing invention.

In this special issue, we bring you stories of people who are in the thick of that reinvention today. IEEE Spectrum is marking 60 years of publication this year, and we’re celebrating by highlighting both the creative act and the grindingly hard engineering work required to turn an idea into something world changing. In these pages, we take you behind the scenes of some awe-inspiring projects to reveal how technology is being made—and remade—in our time.

Inventors Are Everywhere

Invention has long been a democratic process. The economist B. Zorina Khan of Bowdoin College has noted that the U.S. Patent and Trademark Office has always endeavored to allow essentially anyone to try their hand at invention. From the beginning, the patent examiners didn’t care who the applicants were—anyone with a novel and useful idea who could pay the filing fee was officially an inventor.

This ethos continues today. It’s still possible for an individual to launch a tech startup from a garage or go on “Shark Tank” to score investors. The Swedish inventor Simone Giertz, for example, made a name for herself with YouTube videos showing off her hilariously bizarre contraptions, like an alarm clock with an arm that slapped her awake. The MIT innovation scholar Eric von Hippel has spotlighted today’s vital ecosystem of “user innovation,” in which inventors such as Giertz are motivated by their own needs and desires rather than ambitions of mass manufacturing.

But that route to invention gets you only so far, and the limits of what an individual can achieve have become starker over time. To tackle some of the biggest problems facing humanity today, inventors need a deep-pocketed government sponsor or corporate largess to muster the equipment and collective human brainpower required.

When we think about the challenges of scaling up, it’s helpful to remember Alexander Graham Bell and his collaborator Thomas Watson. “They invent this cool thing that allows them to talk between two rooms—so it’s a neat invention, but it’s basically a gadget,” says Eric Hintz, a historian of invention at the Smithsonian Institution. “To go from that to a transcontinental long-distance telephone system, they needed a lot more innovation on top of the original invention.” To scale their invention, Hintz says, Bell and his colleagues built the infrastructure that eventually evolved into Bell Labs, which became the standard-bearer for corporate R&D.

In this issue, we see engineers grappling with challenges of scale in modern problems. Consider the semiconductor technology supported by the U.S. CHIPS and Science Act, a policy initiative aimed at bolstering domestic chip production. Beyond funding manufacturing, it also provides US $11 billion for R&D, including three national centers where companies can test and pilot new technologies. As one startup tells the tale, this infrastructure will drastically speed up the lab-to-fab process.

And then there are atomic clocks, the epitome of precision timekeeping. When researchers decided to build a commercial version, they had to shift their perspective, taking a sprawling laboratory setup and reimagining it as a portable unit fit for mass production and the rigors of the real world. They had to stop optimizing for precision and instead choose the most robust laser, and the atom that would go along with it.

These technology efforts benefit from infrastructure, brainpower, and cutting-edge new tools. One tool that may become ubiquitous across industries is artificial intelligence—and it’s a tool that could further expand access to the invention arena.

What if you had a team of indefatigable assistants at your disposal, ready to scour the world’s technical literature for material that could spark an idea, or to iterate on a concept 100 times before breakfast? That’s the promise of today’s generative AI. The Swiss company Iprova is exploring whether its AI tools can automate “eureka” moments for its clients, corporations that are looking to beat their competitors to the next big idea. The serial entrepreneur Steve Blank similarly advises young startup founders to embrace AI’s potential to accelerate product development; he even imagines testing product ideas on digital twins of customers. Although it’s still early days, generative AI offers inventors tools that have never been available before.

Measuring an Invention’s Impact

If AI accelerates the discovery process, and many more patentable ideas come to light as a result, then what? As it is, more than a million patents are granted every year, and we struggle to identify the ones that will make a lasting impact. Bryan Kelly, an economist at the Yale School of Management, and his collaborators made an attempt to quantify the impact of patents by doing a technology-assisted deep dive into U.S. patent records dating back to 1840. Using natural language processing, they identified patents that introduced novel phrasing that was then repeated in subsequent patents—an indicator of radical breakthroughs. For example, Elias Howe Jr.’s 1846 patent for a sewing machine wasn’t closely related to anything that came before but quickly became the basis of future sewing-machine patents.

Another foundational patent was the one awarded to an English bricklayer in 1824 for the invention of Portland cement, which is still the key ingredient in most of the world’s concrete. As Ted C. Fishman describes in his fascinating inquiry into the state of concrete today, this seemingly stable industry is in upheaval because of its heavy carbon emissions. The AI boom is fueling a construction boom in data centers, and all those buildings require billions of tons of concrete. Fishman takes readers into labs and startups where researchers are experimenting with climate-friendly formulations of cement and concrete. Who knows which of those experiments will result in a patent that echoes down the ages?

Some engineers start their invention process by thinking about the impact they want to make on the world. The eminent Indian technologist Raghunath Anant Mashelkar, who has popularized the idea of “Gandhian engineering”, advises inventors to work backward from “what we want to achieve for the betterment of humanity,” and to create problem-solving technologies that are affordable, durable, and not only for the elite.

Durability matters: Invention isn’t just about creating something brand new. It’s also about coming up with clever ways to keep an existing thing going. Such is the case with the Hubble Space Telescope. Originally designed to last 15 years, it’s been in orbit for twice that long and has actually gotten better with age, because engineers designed the satellite to be fixable and upgradable in space.

For all the invention activity around the globe—the World Intellectual Property Organization says that 3.5 million applications for patents were filed in 2022—it may be harder to invent something useful than it used to be. Not because “everything that can be invented has been invented,” as in the apocryphal quote attributed to the unfortunate head of the U.S. patent office in 1889. Rather, because so much education and experience are required before an inventor can even understand all the dimensions of the door they’re trying to crack open, much less come up with a strategy for doing so. Ben Jones, an economist at Northwestern’s Kellogg School of Management, has shown that the average age of great technological innovators rose by about six years over the course of the 20th century. “Great innovation is less and less the provenance of the young,” Jones concluded.

Consider designing something as complex as a nuclear fusion reactor, as Tom Clynes describes in “An Off-the-Shelf Stellarator.” Fusion researchers have spent decades trying to crack the code of commercially viable fusion—it’s more akin to a calling than a career. If they succeed, they will unlock essentially limitless clean energy with no greenhouse gas emissions or meltdown danger. That’s the dream that the physicists in a lab in Princeton, N.J., are chasing. But before they even started, they first had to gain an intimate understanding of all the wrong ways to build a fusion reactor. Once the team was ready to proceed, what they created was an experimental reactor that accelerates the design-build-test cycle. With new AI tools and unprecedented computational power, they’re now searching for the best ways to create the magnetic fields that will confine the plasma within the reactor. Already, two startups have spun out of the Princeton lab, both seeking a path to commercial fusion.

The stellarator story and many other articles in this issue showcase how one innovation leads to the next, and how one invention can enable many more. The legendary Dean Kamen, best known for mechanical devices like the Segway and the prosthetic “Luke” arm, is now trying to push forward the squishy world of biological manufacturing. In an interview, Kamen explains how his nonprofit is working on the infrastructure—bioreactors, sensors, and controls—that will enable companies to explore the possibilities of growing replacement organs. You could say that he’s inventing the launchpad so others can invent the rockets.

Sometimes everyone in a research field knows where the breakthrough is needed, but that doesn’t make it any easier to achieve. Case in point: the quest for a household humanoid robot that can perform domestic chores, switching effortlessly from frying an egg to folding laundry. Roboticists need better learning software that will enable their bots to navigate the uncertainties of the real world, and they also need cheaper and lighter actuators. Major advances in these two areas would unleash a torrent of creativity and may finally bring robot butlers into our homes.

And maybe the future roboticists who make those breakthroughs will have cause to thank Marina Umaschi Bers, a technologist at Boston College who cocreated the ScratchJr programming language and the KIBO robotics kit to teach kids the basics of coding and robotics in entertaining ways. She sees engineering as a playground, a place for children to explore and create, to be goofy or grandiose. If today’s kindergartners learn to think of themselves as inventors, who knows what they’ll create tomorrow?

Reference: https://ift.tt/qlFNVTZ

U.S. Chip Revival Plan Chooses Sites

Last week the organization tasked with running the the biggest chunk of U.S. CHIPS Act’s US $13 billion R&D program made some signi...